Total Emission

Blackbody

Definition:

Eb=σT4

Eb is emissive power = radiated power per unit surface area (W/m2)
σ is the Stefan-Boltzmann constant σ=5.67108W/m2K4
T is the surface temperature (K)

Examples:

Example 1 - Sun

Surface Temperature T=5800K
Emissive Power Eb=6.42107W/m2
Radius R=695,000km
Radiated Heat Q˙=3.861026W
Mass m=1.991030kg
Specific radiated heat q˙=1.94104W/kg

Example 2 - Human Body

Skin temperature T33°C=306K
Emissive Power Eb=497W/m2
Surface Area A1.7m2
Radiated Heat Q˙=840W
Mass m=80kg
Specific Radiated Heat q˙=10W/kg

Spectral Emission

Spectral Emissive Power:

Planck's Distribution:

Ebλ(T)=2πhc2λ51exp(hcλkBT)1Eb=Ebλ(T)dλ=σT4

Wien's Displacement Law:

λmax=2898μmKT

Examples:

Example 1 - Sun

Example 2 - Human Body

Example 3 - Earth

Example 4 - Flame

Non-Blackbody

Definitions:

αλ+ρλ+τλ=1

Key properties:

Special case: Blackbody

Kirchhoff's Law:

1824-1887
Prussian
1859: Kirchhoff's of Thermal Radiation
Layman terms:

  • Good absorber is a good emitter
  • Poor absorber is a poor emitter
  • Naturally, a good reflector must be a poor absorber
    Practically:
    αλ=ϵλ

Examples:

Example 1: Metals

Pasted image 20240223141953.png

Example 2: Sunscreen

Pasted image 20240223142232.png

Example 3: Human Skin

Values:
Special case: Gray body
\int_0^\infty \epsilon_\lambda E_{b\lambda}(\lambda, T)d\lambda=\epsilon\sigma T^4$$ Where the overall emission is given by $\int_0^\infty \epsilon_\lambda E_{b\lambda}(\lambda, T)d\lambda$ and the blackbody emission is given by $\sigma T^4$. #### Example 4: Atmosphere ![Pasted image 20240223143009.png](/img/user/Attachments/Pasted%20image%2020240223143009.png)