eθ=1+θ+θ22!+⋯ which converges for any θ∈R =(1−(iθ)22!+⋯)+i(θ−θ33!+θ55!+⋯) where (1−(iθ)22!+⋯)=cosθ and (θ−θ33!+θ55!+⋯)=sinθ
eiθ=cosθ+isinθ eiθ=1+iθ+(iθ)22!+⋯
z=x+yi=reiθ=r(cosθ+isinθ) Let z1=r1eiθ1, z2=r2eiθ2 ⇒z1⋅z2=r1r2ei(θ1+θ2) ⇒|z1⋅z2|=|z1|⋅|z2| and arg(z1⋅z2)=arg(z1)+arg(z2) which uses Set Equality. |z1z2|=|z1||z2|, arg(z1z2)=arg(z1)−arg(z2) z1z2=r1eiθ1r2eiθ2=r1r2ei(θ1−θ2)