Euler's Formula

eθ=1+θ+θ22!+
which converges for any θR
PXL_20240103_201107220~2.jpg
=(1(iθ)22!+)+i(θθ33!+θ55!+)
where (1(iθ)22!+)=cosθ and (θθ33!+θ55!+)=sinθ

eiθ=cosθ+isinθ
eiθ=1+iθ+(iθ)22!+

z=x+yi=reiθ=r(cosθ+isinθ)
Let z1=r1eiθ1, z2=r2eiθ2
z1z2=r1r2ei(θ1+θ2)
|z1z2|=|z1||z2|
and arg(z1z2)=arg(z1)+arg(z2) which uses Set Equality.
|z1z2|=|z1||z2|, arg(z1z2)=arg(z1)arg(z2)
z1z2=r1eiθ1r2eiθ2=r1r2ei(θ1θ2)