Complex Numbers

Definition

A complex number is an expression of the form z=x+iy where x,yR and i is the imaginary unit where i2=1.

Quadratic Equations

x2=ax+bx=12(a±a2+4b)

Cubic Equations

Reduced (depressed) form of the cubic: x3=3px+2q

x=q+q2p33+qq2p33

Bombelli's Example:

Consider x3=15x+4
Has x=4
Here, p=5, q=2 x=2+41253+241253=2+11i3+211i3

{2+11i3=2+ia211i3=2ia2+11i=(2+ia)3211i=(2ia)3$$Thisistrueif$a=1$,$i2=1$.Arithmetic:$$z1=x1+iy1,z2=x2+iy2

then:

z1+z2=(x1+x2)+i(y1+y2)z1z2=(x1+iy1)(x2+iy2)=(x1x2y1y2)+i(x1y2+x2y1)z1z2=(x1+iy1)(x2iy2)(x2+iy2)(x2iy2)=(x1+iy1)(x2iy2)(x22+y22)x=Re(z)y=Im(z)

z¯=xiy complex conjugate of z

Modulus:
|z|=x2+y2=zz¯

Crucial to the Triangle Inequality.